37 research outputs found

    Challenges in Vehicle Safety and Occupant Protection for Autonomous Electric Vertical Take-Off and Landing (eVTOL) Vehicles

    Get PDF
    The burgeoning electric Vertical Take-off and Landing (eVTOL) vehicle industry has generated a significant level of enthusiasm amongst aviation designers, manufacturers and researchers. This industry is determined to change the urban transportation paradigm from traditional ground-based vehicles (cars, taxis, buses) to air-based eVTOL vehicles which can be summoned, much like how conventional taxi services work currently. These new eVTOL vehicles are designed to be small and lightweight and operate autonomously without user intervention. There are many unknowns as to how the industry will mature. The logistics of creating a completely new category of vehicle along with its own set of rules are complex, and there are many known - and unknown - barriers to overcome. Some (of many) known barriers include airspace management, ground logistics, physical space, and, the vehicle design itself. There are many eVTOL vehicle manufacturers and organizations working these problems presently. This report will focus on one major barrier: the level of safety as it pertains to the framework of eVTOL vehicles. A high level of safety is necessary for the vehicles to gain acceptance as the public adapts to these autonomous ride-sharing services. An overview of current levels of transportation safety and some extrapolation into how eVTOL vehicles might compare is first presented. Next, a discussion categorizing the major differences between Crash Prevention and Crash Mitigation as it pertains to eVTOL vehicle safety is included with identification of current deficiencies. The report then expands into a framework for specific ideas that could use Crash Mitigation to improve vehicle safety through a crashworthy systems level approach with several designs highlighted. Finally, a brief discussion into the regulatory approach and potential guidelines as they pertain to new eVTOL vehicles is presented. Accordingly, much of the supplemental data will be taken from sources pertaining to either General Aviation (GA) aircraft, rotorcraft, or transport category aircraft, due to the lack of overarching data from eVTOL vehicles. As of this writing, the European Aviation Safety Agency has released a draft version of a VTOL Special Condition, with a comment period closing in late 2018. It is assumed that eventual expected operations and anticipated future regulations for VTOL vehicles will consist of some combination of these (and other) sources

    Experimental Photogrammetric Techniques Used on Five Full-Scale Aircraft Crash Tests

    Get PDF
    Between 2013 and 2015, full-scale crash tests were conducted on five aircraft at the Landing and Impact Research Facility (LandIR) at NASA Langley Research Center (LaRC). Two tests were conducted on CH-46E airframes as part of the Transport Rotorcraft Airframe Crash Testbed (TRACT) project, and three tests were conduced on Cessna 172 aircraft as part of the Emergency Locator Transmitter Survivability and Reliability (ELTSAR) project. Each test served to evaluate a variety of crashworthy systems including: seats, occupants, restraints, composite energy absorbing structures, and Emergency Locator Transmitters. As part of each test, the aircraft were outfitted with a variety of internal and external cameras that were focused on unique aspects of the crash event. A subset of three camera was solely used in the acquisition of photogrammetric test data. Examples of this data range from simple two-dimensional marker tracking for the determination of aircraft impact conditions to entire full-scale airframe deformation to markerless tracking of Anthropomorphic Test Devices (ATDs, a.k.a. crash test dummies) during the crash event. This report describes and discusses the techniques used and implications resulting from the photogrammetric data acquired from each of the five tests

    Crash Test of Three Cessna 172 Aircraft at NASA Langley Research Center's Landing and Impact Research Facility

    Get PDF
    During the summer of 2015, three Cessna 172 aircraft were crash tested at the Landing and Impact Research Facility (LandIR) at NASA Langley Research Center (LaRC). The three tests simulated three different crash scenarios. The first simulated a flare-to-stall emergency or hard landing onto a rigid surface such as a road or runway, the second simulated a controlled flight into terrain with a nose down pitch on the aircraft, and the third simulated a controlled flight into terrain with an attempt to unsuccessfully recover the aircraft immediately prior to impact, resulting in a tail strike condition. An on-board data acquisition system captured 64 channels of airframe acceleration, along with acceleration and load in two onboard Hybrid II 50th percentile Anthropomorphic Test Devices, representing the pilot and co-pilot. Each test contained different airframe loading conditions and results show large differences in airframe performance. This paper presents test methods used to conduct the crash tests and will summarize the airframe results from the test series

    The Development of a Conical Composite Energy Absorber for Use in the Attenuation of Crash/Impact Loads

    Get PDF
    A design for a novel light-weight conical shaped energy absorbing (EA) composite subfloor structure is proposed. This composite EA is fabricated using repeated alternating patterns of a conical geometry to form long beam structures which can be implemented as aircraft subfloor keel beams or frame sections. The geometrical features of this conical design, along with the hybrid composite materials used in the manufacturing process give a strength tailored to achieve a constant 25-40 g sustained crush load, small peak crush loads and long stroke limits. This report will discuss the geometrical design and fabrication methods, along with results from static and dynamic crush testing of 12-in. long subcomponents

    Vertical Drop Testing and Simulation of Anthropomorphic Test Devices

    Get PDF
    A series of 14 vertical impact tests were conducted using Hybrid III 50th Percentile and Hybrid II 50th Percentile Anthropomorphic Test Devices (ATDs) at NASA Langley Research Center. The purpose of conducting these tests was threefold: to compare and contrast the impact responses of Hybrid II and Hybrid III ATDs under two different loading conditions, to compare the impact responses of the Hybrid III configured with a nominal curved lumbar spine to that of a Hybrid III configured with a straight lumbar spine, and to generate data for comparison with predicted responses from two commercially available ATD finite element models. The two loading conditions examined were a high magnitude, short duration acceleration pulse, and a low magnitude, long duration acceleration pulse, each created by using different paper honeycomb blocks as pulse shape generators in the drop tower. The test results show that the Hybrid III results differ from the Hybrid II results more for the high magnitude, short duration pulse case. The comparison of the lumbar loads for each ATD configuration show drastic differences in the loads seen in the spine. The analytical results show major differences between the responses of the two finite element models. A detailed discussion of possible sources of the discrepancies between the two analytical models is also provided

    Full-Scale Passive Earth Entry Vehicle Landing Tests: Methods and Measurements

    Get PDF
    During the summer of 2016, a series of drop tests were conducted on two passive earth entry vehicle (EEV) test articles at the Utah Test and Training Range (UTTR). The tests were conducted to evaluate the structural integrity of a realistic EEV vehicle under anticipated landing loads. The test vehicles were lifted to an altitude of approximately 400m via a helicopter and released via release hook into a predesignated 61 m landing zone. Onboard accelerometers were capable of measuring vehicle free flight and impact loads. High-speed cameras on the ground tracked the free-falling vehicles and data was used to calculate critical impact parameters during the final seconds of flight. Additional sets of high definition and ultra-high definition cameras were able to supplement the high-speed data by capturing the release and free flight of the test articles. Three tests were successfully completed and showed that the passive vehicle design was able to withstand the impact loads from nominal and off-nominal impacts at landing velocities of approximately 29 m/s. Two out of three test resulted in off-nominal impacts due to a combination of high winds at altitude and the method used to suspend the vehicle from the helicopter. Both the video and acceleration data captured is examined and discussed. Finally, recommendations for improved release and instrumentation methods are presented

    ATD Occupant Responses from Three Full-Scale General Aviation Crash Tests

    Get PDF
    During the summer of 2015, three Cessna 172 General Aviation (GA) aircraft were crash tested at the Landing and Impact Research (LandIR) Facility at NASA Langley Research Center (LaRC). Three different crash scenarios were represented. The first test simulated a flare-to-stall emergency or hard landing onto a rigid surface such as a road or runway. The second test simulated a controlled flight into terrain with a nose down pitch of the aircraft, and the third test simulated a controlled flight into terrain with an attempt to unsuccessfully recover the aircraft immediately prior to impact, resulting in a tail strike condition. An on-board data acquisition system (DAS) captured 64 channels of airframe acceleration, along with accelerations and loads in two onboard Hybrid II 50th percentile Anthropomorphic Test Devices (ATDs) representing the pilot and copilot. Each of the three tests contained different airframe loading conditions and different types of restraints for both the pilot and co-pilot ATDs. The results show large differences in occupant response and restraint performance with varying likelihoods of occupant injury

    The Evaluation of a Test Device for Human Occupant Restraint (THOR) Under Vertical Loading Conditions: Part 1 - Experimental Setup and Results

    Get PDF
    A series of 16 vertical tests were conducted on a Test Device for Human Occupant Restraint (THOR) - NT 50th percentile Anthropomorphic Test Device (ATD) at NASA Langley Research Center (LaRC). The purpose of the tests conducted at NASA LaRC was threefold. The first was to add vertical response data to the growing test database for THOR-NT development and validation. Second, the THOR-NT analytical computational models currently in development must be validated for the vertical loading environment. The computational models have been calibrated for frontal crash environments with concentration on accurately replicating head/neck, thoracic, and lower extremity responses. Finally, familiarity with the THOR ATD is necessary because NASA is interested in evaluating advanced ATDs for use in future flight and research projects. The THOR was subjected to vertical loading conditions ranging between 5 and 16 g in magnitude and 40 to 120 milliseconds (msec) in duration. It was also tested under conditions identical to previous tests conducted on the Hybrid II and III ATDs to allow comparisons to be made. Variations in the test setup were also introduced, such as the addition of a footrest in an attempt to offload some of the impact load into the legs. A full data set of the THOR-NT ATD will be presented and discussed. Results from the tests show that the THOR was largely insensitive to differences in the loading conditions, perhaps due in part to their small magnitudes. THOR responses, when compared to the Hybrid II and III in the lumbar region, demonstrated that the THOR more closely resembled the straight spine Hybrid setup. In the neck region, the THOR behaved more like the Hybrid III. However in both cases, the responses were not identical, indicating that the THOR would show differences in response than the Hybrid II and III ATDs when subjected to identical impact conditions. The addition of a footrest did not significantly affect the THOR response due to the nature of how the loading conditions were applied

    Emergency Locator Transmitter System Performance During Three Full-Scale General Aviation Crash Tests

    Get PDF
    Full-scale crash tests were conducted on three Cessna 172 aircraft at NASA Langley Research Center's Landing and Impact Research facility during the summer of 2015. The purpose of the three tests was to evaluate the performance of commercially available Emergency Locator Transmitter (ELT) systems and support development of enhanced installation guidance. ELTs are used to provide location information to Search and Rescue (SAR) organizations in the event of an aviation distress situation, such as a crash. The crash tests simulated three differing severe but survivable crash conditions, in which it is expected that the onboard occupants have a reasonable chance of surviving the accident and would require assistance from SAR personnel. The first simulated an emergency landing onto a rigid surface, while the second and third simulated controlled flight into terrain. Multiple ELT systems were installed on each airplane according to federal regulations. The majority of the ELT systems performed nominally. In the systems which did not activate, post-test disassembly and inspection offered guidance for non-activation cause in some cases, while in others, no specific cause could be found. In a subset of installations purposely disregarding best practice guidelines, failure of the ELT-to-antenna cabling connections were found. Recommendations for enhanced installation guidance of ELT systems will be made to the Radio Technical Commission for Aeronautics (RTCA) Special Committee 229 for consideration for adoption in a future release of ELT minimum operational performance specifications. These recommendations will be based on the data gathered during this test series as well as a larger series of crash simulations using computer models that will be calibrated based on these dat

    Crew Exploration Vehicle (CEV) Water Landing Simulation

    Get PDF
    Crew Exploration Vehicle (CEV) water splashdowns were simulated in order to find maximum acceleration loads on the astronauts and spacecraft under various landing conditions. The acceleration loads were used in a Dynamic Risk Index (DRI) program to find the potential risk for injury posed on the astronauts for a range of landing conditions. The DRI results showed that greater risks for injury occurred for two landing conditions; when the vertical velocity was large and the contact angle between the spacecraft and the water impact surface was zero, and when the spacecraft was in a toe down configuration and both the vertical and horizontal landing velocities were large. Rollover was also predicted to occur for cases where there is high horizontal velocity and low contact angles in a toe up configuration, and cases where there was a high horizontal velocity with high contact angles in a toe down configuration
    corecore